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Streamwise and wall-normal turbulence components are obtained in fully developed
turbulent pipe over a Reynolds number range from 1.1 × 105 to 9.8 × 106. The stream-
wise intensity data are consistent with previous measurements in the same facility.
For the wall-normal turbulence intensity, a constant region in v′

r.m.s. is found for the
region 200 � y+ � 0.1R+ for Reynolds numbers up to 1.0 × 106. An increase in v′

r.m.s.

is observed below about y+ ∼ 100, although additional measurements will be required
to establish its generality. The wall-normal spectra collapse in the energy-containing
region with inner scaling, but for the low-wavenumber region a y/R dependence
is observed, which also indicates a continuing influence from the outer flow on the
near-wall motions.

1. Introduction
High-Reynolds-number wall-bounded flows are of interest because they encompass

many industrial and geophysical applications. To learn more about these flows, and in
particular, to explore their Reynolds number scaling, a number of recent studies have
been performed. Boundary layer investigations by Fernholz et al. (1995), Hites (1997),
Österlund (1999), and DeGraaff & Eaton (2000) cover Reynolds numbers up to about
Reθ = 6.2 × 104, where Reθ = Ueθ/ν, Ue is the free-stream velocity, θ the momentum
thickness, and ν the kinematic viscosity. Although these Reynolds numbers may seem
large, McKeon & Morrison (2005) have suggested they are not large enough to
reveal the asymptotic high-Reynolds-number behaviour. Studies of neutrally buoyant
atmospheric surface layers offer much higher Reynolds numbers, closer to about
Reθ = 106 (Metzger et al. 2001; Nickels et al. 2005; Kunkel & Marusic 2006), but
there are well-documented difficulties in acquiring accurate and detailed turbulence
measurements in such flows. In this respect, pipe flows are very useful, and recent
work by Zagarola & Smits (1998), McKeon et al. (2004) and Morrison et al. (2004)
have yielded mean flow data for 3.1 × 104 � ReD � 3.5 × 107, and measurements of
the streamwise component of turbulence for 5.5 × 104 � ReD � 5.7 × 106. Here, ReD

is the Reynolds number based on the pipe diameter D and the bulk velocity U . For
the purpose of comparing boundary layer and pipe flows, the equivalence between
Reynolds numbers may be taken as ReD ≈ 20Reθ (assuming θ/δ ≈ 0.1, and δ =O(R),
where R is the pipe radius and δ is the boundary layer thickness). Therefore the
highest boundary layer Reynolds number found in the laboratory is equivalent to a
pipe flow of only about 106, and therefore pipe flows are well suited for studies of very
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Experiments Reynolds number Component

Laufer (1954) 5.0 × 104 ∼ 5.0 × 105 u′, v′

Lawn (1971) 3.8 × 104 ∼ 2.5 × 105 u′, v′

Townes et al. (1972) 3.0 × 104 ∼ 4.8 × 105 u′, v′

Perry & Abell (1975) 7.8 × 104 ∼ 2.6 × 105 u′, v′

Perry, Henbest & Chong (1986) 7.5 × 104 ∼ 2.0 × 105 u′, v′

Morrison et al. (2004) 5.5 × 104 ∼ 5.7 × 106 u′

Table 1. Existing turbulence data in fully developed pipe flow.

high-Reynolds-number turbulence. Here, we present measurements of the wall-normal
component of turbulence in fully developed pipe flow for 1.1 × 105 � ReD � 6.2 × 106

to complement the work by Morrison et al. (2004), and to provide additional insight
on high-Reynolds-number turbulence. Previous measurements of this component were
for Reynolds numbers less than 5 × 105 (see table 1), and so the present data extend
the data base by more than an order of magnitude, and reveal new aspects of the
scaling behaviour.

2. Turbulence scaling
Townsend (1976) proposed that near-wall turbulence is a combination of locally

active motions (ui) and inactive motions (uo). Here, ui
2 is the inner-flow-induced or

active motion that scales on inner-layer parameters (velocity scale uτ and length scale
ν/uτ ), and uo

2 is the outer-flow-induced or inactive motion that scales on outer-layer
parameters (velocity scale uτ and length scale δ or R). As usual, uτ =

√
τw/ρ, where

τw is the wall shear stress and ρ is the fluid density. The active motions are those that
are expected to contribute to the shear stress −u′v′, whereas the inactive motions are
seen as large eddies ‘meandering or swirling’ in the near-wall region that contribute
only to the wall-parallel components u′ and w′. Based on Townsend’s arguments,
there is no strong interaction between inactive and active motions when the Reynolds
number is sufficiently high, so the streamwise turbulence intensity is just a linear
superposition of the two. That is, u′2 = ui

2 + uo
2. However, the peak values of u′2 and

w′2 in the near-wall region do not collapse with inner-layer parameters, but increase
indefinitely with Reynolds number (see, for example, Metzger et al. 2001), indicating
the continuing influence of the inactive motions in the near-wall region. For the wall-
normal component in the inner region, Townsend’s hypothesis predicts that v′ ∼ vi ,
and v′2+

= f (y+), where y+ = yuτ/ν. One of the aims of the present study is to obtain
high-quality data on v′ at high Reynolds numbers to verify these expectations.

A more detailed physical model based on Townsend’s hypothesis, called the
‘attached eddy model’, was developed by Perry & Chong (1982), Perry et al. (1986),
Perry & Marusic (1995) and Marusic & Perry (1995). Here, near-wall turbulence
is modelled as the linear superposition of a number of hierarchies of self-similar
attached eddies, with the number of hierarchies increasing with Reynolds number.
By using dimensional analysis and overlap arguments, two self-similar regions in the
spectra were proposed for the streamwise component of turbulence: one that follows
a k−1 law and another that follows a k−5/3 law. The k−5/3 scaling is expected to be
universal for high wavenumbers, but the k−1 scaling is expected to appear only for
wall distances that lie within the overlap region for the mean flow (in our case, where
600 <y+ < 0.12R+). At sufficiently high Reynolds numbers, the k−1 behaviour should
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appear using both inner and outer scaling in order to be self-similar. That is,

φ11(k1y)

uτ
2

=
A1

k1y
, (2.1)

φ11(k1R)

uτ
2

=
A1

k1R
, (2.2)

where φ11(k1y) is the energy density per unit non-dimensional wavenumber k1y, k1 is
the streamwise wavenumber, and A1 is a universal constant which depends on the
particular eddy shape adopted in the model. The presence of this scaling denotes that
complete similarity is achieved (that is, it is independent of Reynolds number).

A similar analysis was proposed for the wall-normal component. Because eddies
of scale R are damped first by the wall (the impermeability constraint), asymptotic
matching with inner and outer scales is not possible, and only one self-similar region
is found, that is, a region of k−5/3 scaling. The k−1 scaling is not expected to appear
in the φ22 spectra.

Broadband turbulence intensity distributions are obtained from these spectral
arguments by integrating over the various spectral regions (Perry et al. 1986). Hence:

u′2

uτ
2

= B1 − A1 ln

(
y

R

)
− C1(y

+)−1/2, (2.3)

v′2

uτ
2

= B3 − 4

3
C1(y

+)−1/2, (2.4)

where C1 is another universal constant, and B1 and B3 are characteristic constants
that vary with the flow geometry (boundary layer, pipe, or channel). The pipe flow
measurements by Perry et al. (1986) over a Reynolds number range of 7.5 × 104 to
2.0 × 105 supported the proposed model, and Perry & Li (1990) and Marusic et al.
(1997) extended the model to zero-pressure gradient turbulent boundary layers for
arbitrarily high Reynolds numbers.

Recently, Morrison et al. (2004) presented measurements of the streamwise velocity
fluctuations in pipe flow for Reynolds numbers from 5.5 × 104 to 5.7 × 106. Turbulence
intensities, moments up to sixth order, and frequency spectra were obtained.

The u′2 distributions displayed two maxima. The first maximum was located near
y+ =15, the point where the production of turbulence kinetic energy also reaches
its maximum. Its peak value increased with Reynolds number, as seen by Fernholz
& Finley (1996) and Metzger et al. (2001). Morrison et al. (2004) proposed that
the inactive motion ‘is somewhat of a misnomer’ because the outer-layer motions
clearly contribute to the energy in the near-wall region by producing shear even at
very high Reynolds numbers. The second maximum, at y+ ≈ 500, appears only for
ReD > 2 × 105, and increases indefinitely with Reynolds number, as does its distance
from the wall, suggesting a continued influence of viscosity in the outer region even
at very high Reynolds numbers.

In contrast to the conclusions drawn by Perry and co-workers, Morrison et al. found
that the spectra did not show complete similarity even for Reynolds numbers up to
5.5 × 106. At the highest Reynolds number a limited collapse of the spectra at different
wall distances was found in the region of k1y ∼ 1, but there was no clear region that
displayed a k1

−1 slope. In addition, this wavenumber region in inner scaling did not
collapse in outer scaling, and vice versa. In other words, complete similarity was not
shown at any Reynolds number up to 5.5 × 106. The probability density functions
were also tested for similarity, and similarly no collapse was found for either different
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Figure 1. Princeton/DARPA-ONR Superpipe facility.

y+ locations at the same Reynolds number, or for different Reynolds numbers at the
same y+ location.

Recently, Nickels et al. (2005), in a study of a boundary layer at Reθ = 3.45 × 104,
observed a k1

−1 region covering about 1/3 of a decade very close to the wall at
y/δ = 0.007. They estimated that one decade of k1

−1 behaviour would be seen at
y/δ = 0.0019 for Reθ = 1.38 × 105 (equivalent to ReD ≈ 2.76 × 106), and that no k1

−1

behaviour can exist for y/δ > 0.019. Thus the k1
−1 scaling, if it exists at all, is expected

to be confined to a very small region of the flow, even at high Reynolds number.
These observations on self-similarity lead to a new evaluation for the similarity

argument itself and the inactive motion concept. The present study extends the work
of Morrison et al. (2004) on the streamwise component to an evaluation of the
wall-normal component of turbulence, a crucial feature of the active motions.

3. Experimental methods
All data presented in this paper were acquired using hot-wire anemometry in

the Princeton/DARPA-ONR Superpipe Facility (see figure 1). The facility uses
compressed air at pressures up to 200 atm as the working fluid, and produces
fully developed turbulent pipe flow at Reynolds numbers from 3.1 × 104 to 3.5 × 107.
The test pipe has an internal diameter of D = 129.36 ± 0.08 mm. The surface finish of
the test pipe is estimated as 0.15±0.03 µm, and the surface is smooth for all 2.1 × 107,
which is greater than all Reynolds numbers studied here (see McKeon et al. 2004
and Shockling, Allen & Smits 2006). The first access port (the location used for all
turbulence measurements) is located 160D downstream of the entrance. A fixed Pitot
tube recorded the centreline velocity Ucl at the second access port located about 35D

downstream from the first. The pressure gradient was measured using twenty static
wall pressure taps placed between the first and second ports over a distance of 25D.
Further details on the facility and the measurement techniques used here are given
by Zagarola & Smits (1998), Zagarola (1996), McKeon et al. (2004) and Zhao (2005).

Crossed hot-wire probes were used to measure the streamwise and wall-normal
components of turbulence. The probes were made at the University of Poitiers
in France and used tungsten wires with diameters of 2.5 µm and lengths of
l ≈ 0.5 mm. The distance between the two wires was approximately 0.5 mm. To
facilitate measurements close to the wall, the hot-wire probe was inclined towards the
wall at about 7◦ from the mean flow direction.

The wires were operated in constant temperature mode using the Dantec Streamline
system. A Krohn-Hite-3382 filter was used to low-pass the signals at fc = 0.1Hz to
obtain the DC component, and a Krohn-Hite-3988 filter was used to band-pass the
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ReD y+
0 l+

1.1 × 105 30 20
1.4 × 105 50 28
4.8 × 105 155 76
1.1 × 106 322 164
9.8 × 106 2494 1226

Table 2. Non-dimensional wire length l+, and non-dimensional wall distance of the first
point y+

0 at different Reynolds numbers.

fluctuating component (fc � f � fs/2). The low-pass signal was sampled at 1 kHz,
and the high-pass signals were sampled at fs = 50 kHz (except for experiments with
Re = 9.8 × 106 where fs was 75 kHz). At each location in the profile, 90 × 106 data
points were obtained, corresponding to 1800 s in real time (except for Re= 9.8 × 106

where it corresponds to 1400 s). The signals were digitized and analysed using National
Instruments boards and Labview software.

The probes were calibrated using a new method developed by Zhao et al. (2004)
called ‘stress calibration’, which uses the fact that the total stress in a fully developed
turbulence pipe is known from the streamwise pressure drop. Stress calibration was
demonstrated to be more accurate than the traditional angle calibration method or
the dynamic procedure suggested by Perry (1982) (see Zhao & Smits 2006).

Because of geometrical limitations, y0, the closest distance to the wall at which
the crossed wires could be placed, was 1.40 mm. Table 2 shows y+

0 at each Reynolds
number studied. It is clear that the flow in the near-wall region is inaccessible to
the crossed-wire probe even at the lowest Reynolds number. This is an important
limitation on the measurements, but our main focus is on the overlap region (the log-
law region in the mean velocity profiles, that is, the region y+ � 500 and y/R � 0.1).
Note that y0/R = 0.02.

The spatial resolution of the probe is normally presented in terms of the non-
dimensional wire length l+ = luτ /ν, which varies with Reynolds number as shown in
table 2. It is usually assumed that all the scales of turbulence will be resolved for
l+ � 10 (see, for example, Klewicki & Falco 1990). According to Khoo, Chew & Li
(1997), however, measurements with l+ � 22 will be fully resolved for y+ � 5, and ac-
cording to this criterion the spatial resolution of the measurements at ReD = 1.1 × 105

and 1.4 × 105 are probably adequate, since the minimum wall distances are y+
0 = 30

and 50, respectively. The measurements at higher Reynolds numbers, however, are
affected to a greater or lesser degree by the limited spatial resolution of the probe.

To estimate the effects on the spectra and the broadband turbulence intensity, we
use the work of Wyngaard (1968). According to Wyngaard, if it is assumed that the
high-wavenumber region follows a universal scaling based on the Kolmogorov length
scale η = (ν3/ε)1/4, where the dissipation rate ε is estimated as ε =15ν

∫
k2φ(k) dk, then

a wavenumber can then be found for a given attenuation percentage in the energy at
that wavenumber. The wavenumbers for a 10 % attenuation (k10) are given in table 3.

The estimated errors on the broadband turbulence intensities are shown in
table 4. Figure 2 illustrates how these estimates were obtained for a specific case
(Re = 1.1 × 105 and y/R =0.1). The spectrum in the high-wavenumber portion is
replaced by k−5/3 law that blends into Wyngaard’s form of the dissipation spectrum,
based on a known or estimated value of the Kolmogorov length scale. It was not
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l/η k10(m
−1)

ReD y/R = 0.05 0.1 1 0.05 0.1 1

1.4 × 105 8 7 4 2200 2400 3000
4.8 × 105 20 17 10 1400 1400 1600
1.1 × 106 44 38 21 1200 1200 1400
9.8 × 106 236 200 100 1000 1000 1100

Table 3. Wire length in terms of the Kolmogorov length scale, and cutoff wavenumber k10

where a 10 % attenuation in the spectrum is expected.

u2 v2

ReD y/R = 0.05 0.1 1.0 0.05 0.1 1.0

4.8 × 105 1 1 1 3 3 2
1.1 × 106 1.4 1.2 1.1 4 4 3

Table 4. Percentage error estimates on attenuation of small-scale motions due to spatial
filtering.
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Figure 2. Procedure for estimating the errors in the turbulence intensities (for Re= 1.1 × 105

and y/R =0.1) due to limited spatial resolution. ——, measured spectrum; - - -, extrapolated
spectrum based on Wyngaard (1968)’s analysis.

possible to make this estimate at ReD = 9.8 × 106 because the spectra in the high-
wavenumber region are contaminated by additional effects.

Temporal resolution is also an issue. To fully resolve the turbulence in time, the
frequency response of the instrument needs to be higher than Kolmogorov frequency,
which increases with Reynolds number, that is, fK ∼ U

√
ReD/D. In our experiments,
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Figure 3. Mean velocity measurement for Reynolds number from 1.1 × 105 to 6.2 × 106.
Zagarola & Smits (1998) Pitot tube data shown are corrected by McKeon et al. (2003).
Successive velocity profiles are offset by 	U+ = 5 for clarity.

fK ranges from about 24 kHz at ReD ∼ 105, to about 244 kHz at ReD ∼ 107.
The frequency response of the hot-wire anemometry system was in the range of
60 kHz ∼ 100 kHz, so that at the highest Reynolds number the dissipation range is
not fully resolved for lack of frequency response (independent of any spatial filtering
that may also be present).

One final source of error in the crossed hot-wire measurements is the so-
called binormal cooling effect, which is the additional heat transfer due to the
velocity component normal to the hot-wire measurement plane (w′ in current study).
According to Zhao & Smits (2006), neglecting this additional heat transfer can lead
to significant errors, but for the present measurements the errors are generally small.
For example, in the near-wall region where turbulence level is high, at Re = 1.4 × 105,
the errors are about 1.5 %, 3 %, 0.5 % and 1 % for U , u′v′, u′2 and v′2 respectively.

4. Experimental results
To verify that the crossed-wire probe was performing satisfactorily, the mean

velocity and streamwise turbulence intensity results were compared with previous
data obtained in the same facility. The mean velocity profiles for Reynolds numbers
from 1.1 × 105 to 6.2 × 106 are shown in figure 3, scaled using inner variables so
that U+ = U/uτ and y+ = yuτ/ν. The results are compared with the Pitot tube
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Figure 5. The streamwise turbulence intensity u′2 in outer scaling.

measurements obtained by Zagarola & Smits (1998), as corrected by McKeon et al.
(2004). Good agreement is found except in the near-wall region, where the crossed
hot-wire data are slightly higher than the Pitot tube data. This trend is consistent in
sense and magnitude with the effects of binormal cooling as described by Zhao &
Smits (2006).

The streamwise turbulence data are shown in figure 4 in inner-layer coordinates,
where u′2+

= u′2/uτ
2. Generally, the crossed hot-wire data agree very well with the

single-wire data obtained by Morrison et al. (2004). The near-wall peak near y+ = 15
is not shown in the present measurements because the crossed hot-wire cannot access
this region. Figure 5 shows the crossed-wire data in outer-layer coordinates. A collapse
was found for y/R � 0.4, but as found by Morrison et al. there is no collapse in the
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Figure 7. The wall-normal turbulence intensity v′2+
in outer scaling.

overlap region (600 � y+ � 0.12R+). Although this observation suggests a Reynolds
number dependence, the effects of spatial filtering prevent a more definite conclusion.

The wall-normal component v′ data are shown in inner and outer scaling in
figures 6 and 7, respectively. In inner scaling the data demonstrate a collapse in the
overlap region for Reynolds numbers higher than 4.8 × 105, and the value for v′+

rms

in this region is constant around 1.15. Somewhat unexpectedly, however, the wall-
normal intensity levels rise for y+ � 50. This trend is obvious only for the two lowest
Reynolds numbers, but the presence of a near-wall peak in the wall-normal turbulence
intensity is suggested. The near-wall peak in the streamwise turbulence intensity is
well known, and its increase with Reynolds number is attributed to the influence of
inactive motion originally proposed by Townsend (1976). The presence of a similar
peak in the wall-normal component behaviour may provide further evidence for the
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nonlinear interaction between locally active motion and the outer inactive motions.
Unfortunately, the present results can only hint at the behaviour of this peak, and
further measurements with better spatial resolution will be needed to investigate it
more fully.

The data for v′2 in outer scaling (figure 7) also demonstrate a reasonable collapse
in the overlap region, independent of Reynolds number. At first sight, the collapse
seems to support the attached eddy model, in the sense that the inner and outer flow
influences appear to be small in the overlap region. We shall see that this conclusion
is not supported by the wall-normal spectra presented below. In the outer region,
collapse is also found for y/R � 0.4, as in the streamwise intensity outer scaling
result, except for the highest Reynolds number where the data seem unreasonably
high compared to the other profiles. It is not clear what would cause this deviation
to occur. It is true that at higher Reynolds numbers the air density is high, and the
hot-wire requires a high current level to maintain a given overheat ratio. Since there
are limits on the maximum current available, the overheat ratio at higher Reynolds
numbers needs to be reduced, which reduces its sensitivity. In addition, the high
current levels may lead to nonlinearities in the instrument response. Furthermore, the
high mass flow rate at high Reynolds number places an extra load on the wire, which
may bend in response. There is no evidence that the calibration was affected (indeed,
the correlation coefficient was 0.998 or better for all Reynolds numbers), but the
effective angle of the wires changed a few degrees with Reynolds number. Although
it is not obvious why any of these effects would cause a systematically high value for
v′2 at the highest Reynolds number, these considerations suggest that some caution
should be exercised in interpreting the data at 6.1 × 106.

Figures 8 and 9 show the streamwise turbulence spectra scaled using inner variables
for Reynolds numbers from 1.1 × 105 to 9.8 × 106. The streamwise wavenumber k1 is
deduced using Taylor’s hypothesis, so that k1 = 2πf/U . We should note that similar
data were obtained by Morrison et al. (2004) using single wires, but their low-
wavenumber results were under-resolved because they used relatively short record
lengths. Later analysis by McKeon and Morrison (private communication) using
longer record lengths yielded results that agree very well with the data presented here.
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Figure 10. Spectra of the wall-normal component at all Reynolds numbers.

Particular attention was given to spectra in the overlap region. The data collapse
only in a limited region around k1y ∼ 1 where the spectra cross. According to the
attached eddy model (Perry et al. 1986; Perry & Marusic 1995; Marusic & Perry
1995), a collapse showing a k−1 behaviour (that is, a flat region in the pre-multiplied
spectra) is expected, with the level corresponding to a universal constant A1. In the
results obtained here (figure 9), there is no collapse to a k−1 behaviour, and no
universal constants are found. This result agrees with Morrison et al. (2004), who also
found no similarity behaviour in the overlap region.

The spectra for the wall-normal component are shown in figure 10 for Reynolds
numbers from 1.1 × 105 to 9.8 × 106. No k−1 region is found, although a reasonably
extensive k−5/3 region is apparent.

Some selected spectra in the overlap region are shown in figures 11–13. In inner
scaling (figure 11), good collapse is found for all spectra for 1 � k1y � 10, and for
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those spectra with the same y/R, good collapse is also found for k1y � 1. It appears,
therefore, that the outer flow (that scales on uτ and R) affects the wall-normal motion
in the overlap region, so that the similarity behaviour expected from the attached
eddy model does not occur, at least for Reynolds numbers up to 106. Figure 12 shows
the same data in pre-multiplied form. The most energy-containing eddies lie in the
region 1 � k1y � 10, and significant energy is contained in very low wavenumbers:
about one-third of the total energy in the wall-normal component is contained in
k1y � 1. Note that the streamwise spectra (figure 9) peaks around k1y ≈ 0.1 at the
same wall distance, so that the energy-containing scales of u′ are much longer than
those of v′.

In outer scaling (figure 13), no general collapse is found in any wavenumber region,
but for spectra at the same radial position a collapse is found for k1R � 20 and
k1R � 200.

The shear stress spectra (cospectra) in the overlap region are shown in figures 14–
17. According to the attached eddy model, the major contribution to the Reynolds
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Figure 13. Spectra of the wall-normal component in the overlap region using outer scaling.
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Figure 14. Cospectra of u′v′ in the overlap region using inner scaling.

shear stress comes from local eddies, so the spectra are expected to collapse for the
entire inner-scaled wave-number region. In our results (figure 14), a good collapse was
found for the region of 0.1 � k1y � 10, but in the low-wavenumber region collapse
was only found for spectra at the same y/R locations, indicating an influence from
the outer flow. The pre-multiplied spectra (figure 15) highlight the collapse found for
the energy-containing wavenumbers (k1y ∼ 1). In outer-layer coordinates (figures 16
and 17), there is no obvious similarity behaviour evident.

5. Discussion and conclusions
For the streamwise turbulence intensity, as reported earlier by Morrison et al.

(2004), it was found that the data do not collapse with inner scaling, but with outer
scaling a collapse within ±10 % is found for y/R � 0.4. The streamwise turbulence
spectra within the overlap region for the mean flow (600 � y+ � 0.12R+) were used to
search for similarity behaviour, especially the k−1 law. Using inner scaling, collapse
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Figure 15. Cospectra of u′v′ in the overlap region using inner scaling in pre-multiplied form.
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Figure 16. Cospectra of u′v′ in the overlap region using outer scaling.

was found only for a limited region around k1y ∼ 1 where the spectra cross each other,
but no prominent k−1 region was found. As proposed by Perry et al. (1986), Perry &
Marusic (1995) and Marusic & Perry (1995), k−1 scaling is expected in the shoulder
(flat) region, and the level corresponds to a universal constant A1. However, the results
reported here still show a Reynolds number dependence and a y/R dependence in the
wavenumber region of k1ν/uτ � k1y � k1R. This result could reflect the incomplete
similarity proposed by Morrison et al. (2004), which suggests that outer-flow-inactive
motions interact with the near-wall motions in a nonlinear way. This seems to
be the most likely explanation, as based on the wall-normal turbulence measurements
results obtained here and by Morrison et al. Alternatively, y/R may not be small
enough to see a prominent k−1 region. According to Nickels et al. (2005), y/R may
need to be less than about 0.01 to observe a prominent k1

−1 region at these Reynolds
numbers.

It is instructive to compare the high-Reynolds-number pipe flow spectra with
boundary-layer data at comparable Reynolds numbers. The atmospheric layer
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Figure 17. Cospectra of u′v′ in the overlap region using outer scaling in pre-multiplied form.
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Figure 18. Wall-normal spectra in pipe flow and boundary layer flows. −−−, atmospheric
data, Reτ = 3 × 106 (Marusic et al. 2001); −−−, laboratory data, Reτ = 3.5 × 103 (Marusic et al.
2004); �, Superpipe data ReD = 4.8 × 105 (Reτ =2 × 104); ReD = 1.1 × 106 (Reτ = 4.2 × 104).

typically has Reθ ≈ 106 (Marusic, Kunkel & Porte-Agel 2001), which has an equivalent
ReD ≈ 2 × 107. Figures 18 and 19 show this comparison. The wall-normal and
cospectra from the pipe experiment fall below the boundary layer spectra. For
the energy-containing part, the pipe spectra are very close to the atmospheric spectra,
given that atmospheric data are not as well converged as the Superpipe data.

For the wall-normal turbulence intensities, a collapse for y+ � 200 and y/R � 0.1
was found for Reynolds numbers from 1.1 × 105 to 1.0 × 106. The collapse corresponds
to a region of constant (v′

r.m.s.) around 1.15uτ . The wall-normal turbulence intensity
appeared to also show the start of a maximum near the wall (figure 6). This rise looks
similar to the first maximum found in the streamwise turbulence intensity profile
at about y+ ∼ 15, and may show an influence of the outer flow on the wall-normal
components in the near-wall region. This observation cannot be explained using
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Figure 19. Cospectra in pipe flow and boundary layer flows. Symbols as in figure 18.

Townsend’s inactive motion concept, but is in accord with Morrison et al.’s incomplete
similarity arguments: the near-wall motion (y+ ∼ 15) is influenced by the outer flow,
and due to the intrinsic nonlinearity of the Navier–Stokes equation, so there is no
clear-cut distinction between active and inactive motions and no complete similarity
exists. Further measurements in the near-wall region at high Reynolds numbers are
urgently needed, but they are technically challenging because of the experimental
limitations that occur, as amply demonstrated in the current contribution.

The spectra of the wall-normal component and cospectra were consistent with the
behaviour of the wall-normal and streamwise intensities. Similarity was found when
using inner-scaling parameters, but the influence of the outer flow persisted in the
low-wavenumber regions for near-wall region (y/R � 0.051) and Reynolds numbers
up to 1.0 × 106. Again, a nonlinear interaction between inner flow and outer flow in
the near-wall region is suggested.
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